Math 522 Exam 1 Solutions

1. You're playing Fibonacci nim. You start with 66, and you go first. What are all your possible (initial) winning moves?

We write $66=55+8+3$, as the sum of nonconsecutive Fibonacci numbers. We may take 3, leaving our opponent with a red position: $55+8$ and unable to take 8 . Or, we may take 11, leaving our opponent with a red position: 55 and unable to take 55 . All other moves end in disaster against a skilled opponent.
2. Recall that F_{j} stands for the $j^{\text {th }}$ Fibonacci number. For all natural n, prove that $F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{2 n-1} F_{2 n}=F_{2 n}^{2}$.

We proceed by induction. The base case is $n=1$, which claims $F_{1} F_{2}=F_{2}^{2}$. Since $F_{1}=F_{2}=1$, this is true. Otherwise we assume the statement holds for n and try to prove it for $n+1$. Note that the left hand side has $2 n-1$ terms, which increases by two when we increase n. Hence, we need to add two terms to each side, namely $F_{2 n} F_{2 n+1}+F_{2 n+1} F_{2 n+2}$. The right hand side simplifies as $F_{2 n}^{2}+F_{2 n} F_{2 n+1}+F_{2 n+1} F_{2 n+2}=$ $F_{2 n}\left(F_{2 n}+F_{2 n+1}\right)+F_{2 n+1} F_{2 n+2}=F_{2 n} F_{2 n+2}+F_{2 n+1} F_{2 n+2}=$ $\left(F_{2 n}+F_{2 n+1}\right) F_{2 n+2}=F_{2 n+2}^{2}$, as desired.

